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Supplementary information

Supplementary Tables

Location Species Strain Reference
An. gambiae Kisumu [1]
An. coluzzii Ngousso [2]Glasgow, UK
An. arabiensis Ifakara [3]
An. gambiae Ifakara, Niage [4]Ifakara, TZ
An. arabiensis Ifakara, Niage [5]
An. gambiae Soumousso [6]Bobo-Dioulasso, BF
An. coluzzii Vallée du Kou [6]

Supplementary Table 1 List of species and strains used for training DL-MIRS.

Type of data Species Burkina
Faso

Tanzania United
Kingdom

Discarded
spectra

An. gambiae 2005 8604 2277
An. coluzzii 2228 0 2491LV
An. arabiensis 0 8557 1661

1416

An. gambiae 2904 0 0
An. coluzzii 1027 0 0GV
An. arabiensis 0 5687 0

640

An. gambiae 265 1418 0
An. coluzzii 248 0 0EV
An. arabiensis 0 1346 0

244

An. coluzzii 335 0 0Wild Dissected
An. arabiensis 0 758 0

11

An. coluzzii 568 0 0Wild Non-dissected
An. arabiensis 0 834 0

0

Supplementary Table 2 Sample sizes per origin and species. Source data are provided as
TableS2.csv7 .
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Study Laboratory Variation (LV)
Data from group LV only.
8224 mosquito data points.
Data from Tanzania, Burkina Faso, United Kingdom.
Data balanced, where possible, by country, species, and age groups.
Study Genetic Variation (GV)
Data from groups LV and GV.
4800 mosquito data points from group LV and 2400 mosquito data points
from group GV.
Data from Tanzania and Burkina Faso only.
Data balanced by country, species, and age groups.
Testing data set is a 10% split of group GV data only.
Study Environmental Variation (EV)
Implicit use of data from groups LV and GV (7200 data points).
Data from group EV.
A varying number of data points from the EV group.
EV data from Tanzania and Burkina Faso only.
Data balanced by country, species, and age groups for groups LV and GV,
and balanced where possible for group EV.
Testing data set is a hold out data set of 180 EV data points not included in
the training set.
Study Wild Populations
Implicit use of data from groups LV and GV (7200 data points).
Data from wild mosquitoes.
Data balanced by country, species, and age groups for groups LV and GV,
and unbalanced for wild group.
In Burkina Faso, the transfer learning with the wild data set is composed by
205 G0, 104 G1, 26 G234 (total 335 data points, 4.4% of the whole training
set).
In Tanzania, the transfer learning with the wild data set is composed by 168
G0, 573 G1, 17 G234 (total 758 data points, 9.5% of the whole training set).
Testing data set is wild data set of 568 (Burkina Faso) and 834 (Tanzania)
non-dissected mosquito data points not included in the training set.

Supplementary Table 3 Allocation of samples between training and testing of DL-MIRS. Source
data are provided as TableS3.csv7 .
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E1 – Reducting parameters
Data from groups LV, GV, and EV only.
4800 mosquito data points from group LV and 2400 mosquito data points from group
GV in the training set.
Data from Tanzania and Burkina Faso only.
Data balanced by country, species, and age groups for groups LV and GV.
Testing data set is group EV.
Consider how the number of trainable parameters in the model affects classification
accuracy.
E2 – Cross EV
Data from groups GV, and EV.
2400 mosquito data points from group GV in the training set and either 1200 data
points from Tanzania or 300 data points from Burkina Faso from Group EV.
Data from Tanzania and Burkina Faso only.
Data balanced by country, species, and age groups for groups GV. Data balanced by
species, and age groups for groups EV.
Testing data set is data from the opposite country to that which was included during
training from group EV.
Attempt to classify unseen EV data from another country.
E3 - Cross laboratory
Data from group LV only.
8224 mosquito data points.
Data balanced, where possible, by country, species, and age groups.
Leave data out from one country as the testing set in an attempt to classify data from
an unseen lab.
E4 – Cross laboratory with reduced parameters
Data from group LV only.
Stage 1:
Initial training set is 3424 mosquito data points from UK group LV, balanced where
possible by species, and age groups.
Sensitivity analysis performed on model from stage 1 to select frequencies.
Stage 2:
Training set is 2400 mosquito data points from either Tanzania or Burkina Faso in
group LV, balanced by species, and age groups.
Testing data set is from group LV from the country left out during training.

Supplementary Table 4 Grouping of mosquito subsets for cross-validation and generalisation of
DL-MIRS.
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Supplementary Table 5 Predicted power to detect a shift in age structure in response to each
of two interventions, long-lasting insecticide-treated nets (LLIN) and attractive toxic sugar baits
(ATSB) relative to a population with no intervention (see Fig. 5). Power depended on the number of
mosquitoes sampled from each population (intervention and control) and the number of spectra
from semi-field (EV) mosquitoes used in the training set. Each power value was estimated from
analysis of 10,000 simulated data sets. Source data are provided as TableS5.csv7 .

PowerN sampled N EV spectra added LLIN intervention ATSB intervention
20 0 6.9% 5.0%
20 162 46.1% 14.8%
20 324 60.0% 18.6%
20 486 60.9% 18.8%
20 654 74.6% 22.7%
20 815 78.0% 24.4%
20 973 75.0% 23.4%
20 1131 79.0% 24.3%
20 1294 80.7% 25.8%
20 1452 78.5% 24.9%
50 0 10.3% 6.4%
50 162 84.6% 31.1%
50 324 94.9% 40.5%
50 486 95.2% 41.7%
50 654 98.8% 50.5%
50 815 99.3% 53.8%
50 973 98.9% 51.2%
50 1131 99.4% 54.3%
50 1294 99.4% 55.2%
50 1452 99.2% 54.4%
100 0 15.4% 7.5%
100 162 99.1% 55.8%
100 324 99.9% 69.5%
100 486 99.9% 70.0%
100 654 100.0% 80.5%
100 815 100.0% 83.2%
100 973 100.0% 80.8%
100 1131 100.0% 82.9%
100 1294 100.0% 84.7%
100 1452 100.0% 83.2%
150 0 20.6% 8.7%
150 162 99.9% 73.5%
150 324 100.0% 85.6%
150 486 100.0% 86.4%
150 654 100.0% 93.6%
150 815 100.0% 94.7%
150 973 100.0% 93.3%
150 1131 100.0% 94.7%
150 1294 100.0% 95.4%
150 1452 100.0% 95.4%
200 0 25.9% 10.6%
200 162 100.0% 84.1%

Continued on next page…
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Table 5 continued from previous page
PowerN sampled N EV spectra added LLIN intervention ATSB intervention

200 324 100.0% 93.9%
200 486 100.0% 94.6%
200 654 100.0% 97.8%
200 815 100.0% 98.7%
200 973 100.0% 98.2%
200 1131 100.0% 98.3%
200 1294 100.0% 98.7%
200 1452 100.0% 98.6%
250 0 30.9% 11.6%
250 162 100.0% 91.9%
250 324 100.0% 97.6%
250 486 100.0% 97.3%
250 654 100.0% 99.4%
250 815 100.0% 99.7%
250 973 100.0% 99.5%
250 1131 100.0% 99.6%
250 1294 100.0% 99.7%
250 1452 100.0% 99.6%
300 0 36.5% 13.4%
300 162 100.0% 95.3%
300 324 100.0% 99.1%
300 486 100.0% 99.2%
300 654 100.0% 99.7%
300 815 100.0% 100.0%
300 973 100.0% 99.8%
300 1131 100.0% 100.0%
300 1294 100.0% 100.0%
300 1452 100.0% 99.9%
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Supplementary Table 6 List of wild samples collected in the villages of Vallée du Kou 5 (VK5) in
Burkina Faso (BF) and Sululu in Tanzania (TZ). An. coluzzii or An. arabiensis were collected from
the field and dissected either on the same day or 2-3 days after collection, and their gonotrophic
cycle determined based on ovarian characterisation. Female that were undergoing or completed
egg development (oogenesis) at the time of dissection could not be assigned to a gonotrophic cycle.
For each collection, a number of non-dissected mosquitoes that was equal to those dissected
on each day was preserved for subsequent DL-MIRS analysis. Source data are provided as
TableS6.csv7 .

Gonotrophic cycleLocation Species Collected Dissected 0 1 2 3 4 Oogenesis Not dissected

VK5 - BF An. coluzzii 15/05/2021 15/05/2021 4 1 1 0 0 4 10
VK5 - BF An. coluzzii 19/05/2021 19/05/2021 5 0 0 0 0 0 5
VK5 - BF An. coluzzii 23/05/2021 25/05/2021 4 0 1 0 0 0 5
VK5 - BF An. coluzzii 27/05/2021 08/06/2021 12 0 0 0 0 0 12
VK5 - BF An. coluzzii 31/05/2021 21/06/2021 4 2 1 0 0 5 12
VK5 - BF An. coluzzii 04/06/2021 14/07/2021 9 0 0 0 0 0 9
VK5 - BF An. coluzzii 08/06/2021 17/05/2021 2 1 0 0 0 14 16
VK5 - BF An. coluzzii 12/06/2021 21/05/2021 5 1 1 1 0 16 24
VK5 - BF An. coluzzii 16/06/2021 27/05/2021 6 2 0 0 0 15 24
VK5 - BF An. coluzzii 20/06/2021 10/06/2021 28 12 1 0 0 6 50
VK5 - BF An. coluzzii 24/06/2021 23/06/2021 1 15 2 1 0 81 100
VK5 - BF An. coluzzii 28/06/2021 16/07/2021 43 3 0 0 0 6 52
VK5 - BF An. coluzzii 02/07/2021 18/05/2021 2 0 1 0 0 10 13
VK5 - BF An. coluzzii 06/07/2021 22/05/2021 0 0 0 0 0 6 6
VK5 - BF An. coluzzii 10/07/2021 28/05/2021 0 1 0 1 0 18 21
VK5 - BF An. coluzzii 14/07/2021 11/06/2021 14 11 4 1 0 0 30
VK5 - BF An. coluzzii 18/07/2021 24/06/2021 17 27 6 3 0 27 80
VK5 - BF An. coluzzii 22/07/2021 17/07/2021 49 26 2 0 0 19 96
Total VK5 An. coluzzii - - 205 102 20 7 0 227 565
Sululu - Tz An. arabiensis 04/05/2021 04/05/2021 15 14 1 0 0 0 30
Sululu - Tz An. arabiensis 07/05/2021 07/05/2021 2 14 0 0 0 9 25
Sululu - Tz An. arabiensis 11/05/2021 11/05/2021 4 20 0 0 0 1 25
Sululu - Tz An. arabiensis 18/05/2021 18/05/2021 2 13 0 0 0 3 18
Sululu - Tz An. arabiensis 21/05/2021 21/05/2021 3 20 0 0 0 2 25
Sululu - Tz An. arabiensis 25/05/2021 25/05/2021 6 16 0 0 0 3 25
Sululu - Tz An. arabiensis 29/05/2021 29/05/2021 2 14 0 0 0 4 20
Sululu - Tz An. arabiensis 04/06/2021 04/06/2021 8 15 0 0 0 7 30
Sululu - Tz An. arabiensis 08/06/2021 08/06/2021 7 20 0 0 0 3 30
Sululu - Tz An. arabiensis 15/06/2021 15/06/2021 4 21 2 0 0 0 27
Sululu - Tz An. arabiensis 18/06/2021 18/06/2021 6 15 2 0 0 0 23
Sululu - Tz An. arabiensis 22/06/2021 22/06/2021 3 27 2 0 0 3 35
Sululu - Tz An. arabiensis 25/06/2021 25/06/2021 6 15 0 0 0 3 24
Sululu - Tz An. arabiensis 29/06/2021 29/06/2021 15 8 0 0 0 0 23
Sululu - Tz An. arabiensis 02/07/2021 02/07/2021 10 10 0 0 0 0 20
Sululu - Tz An. arabiensis 06/07/2021 06/07/2021 6 9 0 0 0 0 15
Sululu - Tz An. arabiensis 13/07/2021 13/07/2021 4 7 0 0 0 0 11
Sululu - Tz An. arabiensis 16/07/2021 16/07/2021 4 9 1 1 0 0 15
Sululu - Tz An. arabiensis 20/07/2021 20/07/2021 5 3 0 0 0 1 9
Sululu - Tz An. arabiensis 23/07/2021 23/07/2021 7 1 0 0 0 8 16
Sululu - Tz An. arabiensis 30/07/2021 30/07/2021 1 5 0 1 0 1 8
Sululu - Tz An. arabiensis 03/08/2021 03/08/2021 1 6 0 0 0 0 7
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Table 6 continued from previous page
Gonotrophic cycleLocation Species Collected Dissected 0 1 2 3 4 Oogenesis Not dissected

Sululu - Tz An. arabiensis 06/08/2021 06/08/2021 4 5 0 0 0 0 9
Sululu - Tz An. arabiensis 10/08/2021 10/08/2021 10 4 0 0 0 1 15
Sululu - Tz An. arabiensis 13/08/2021 13/08/2021 3 3 0 0 0 11 17
Sululu - Tz An. arabiensis 17/08/2021 17/08/2021 14 6 0 0 0 0 20
Sululu - Tz An. arabiensis 24/08/2021 24/08/2021 8 7 0 0 0 3 18
Sululu - Tz An. arabiensis 31/08/2021 31/08/2021 9 5 0 0 0 0 14
Sululu - Tz An. arabiensis 27/04/2021 29/04/2021 0 21 1 1 0 2 25
Sululu - Tz An. arabiensis 28/04/2021 30/04/2021 0 30 1 0 0 4 35
Sululu - Tz An. arabiensis 29/04/2021 01/05/2021 5 41 1 0 0 3 50
Sululu - Tz An. arabiensis 04/05/2021 06/05/2021 2 21 1 0 0 1 25
Sululu - Tz An. arabiensis 07/05/2021 09/05/2021 1 13 0 0 0 1 15
Sululu - Tz An. arabiensis 11/05/2021 13/05/2021 0 14 0 0 0 1 15
Sululu - Tz An. arabiensis 15/05/2021 17/05/2021 0 14 0 0 0 0 14
Sululu - Tz An. arabiensis 18/05/2021 20/05/2021 2 26 2 0 0 0 30
Sululu - Tz An. arabiensis 21/05/2021 23/05/2021 2 21 1 0 0 1 25
Sululu - Tz An. arabiensis 25/05/2021 27/05/2021 5 18 0 0 0 2 25
Sululu - Tz An. arabiensis 29/05/2021 31/05/2021 1 15 1 0 0 3 20
Sululu - Tz An. arabiensis 04/06/2021 06/06/2021 8 20 0 0 0 3 31
Sululu - Tz An. arabiensis 08/06/2021 10/06/2021 9 14 1 0 0 1 25
Sululu - Tz An. arabiensis 15/06/2021 17/06/2021 6 6 0 0 0 0 12
Sululu - Tz An. arabiensis 18/06/2021 20/06/2021 3 11 0 0 0 0 14
Sululu - Tz An. arabiensis 22/06/2021 24/06/2021 8 18 0 0 0 2 28
Sululu - Tz An. arabiensis 29/06/2021 01/07/2021 10 16 0 0 0 0 26
Sululu - Tz An. arabiensis 02/07/2021 04/07/2021 13 13 0 0 0 1 27
Sululu - Tz An. arabiensis 06/07/2021 08/07/2021 5 12 0 0 0 0 17
Sululu - Tz An. arabiensis 13/07/2021 15/07/2021 3 7 0 0 0 0 10
Sululu - Tz An. arabiensis 16/07/2021 18/07/2021 3 15 2 0 0 0 20
Sululu - Tz An. arabiensis 20/07/2021 22/07/2021 4 2 0 0 0 3 9
Sululu - Tz An. arabiensis 23/07/2021 25/07/2021 3 9 0 0 0 4 16
Sululu - Tz An. arabiensis 30/07/2021 01/08/2021 1 7 0 0 0 0 8
Sululu - Tz An. arabiensis 03/08/2021 05/08/2021 1 2 0 0 0 2 5
Sululu - Tz An. arabiensis 06/08/2021 08/08/2021 2 6 0 0 0 0 8
Sululu - Tz An. arabiensis 10/08/2021 12/08/2021 8 8 0 0 0 0 16
Sululu - Tz An. arabiensis 13/08/2021 15/08/2021 1 12 0 0 0 4 17
Sululu - Tz An. arabiensis 17/08/2021 19/08/2021 3 14 0 0 0 1 18
Sululu - Tz An. arabiensis 24/08/2021 26/08/2021 4 10 0 0 0 4 18
Sululu - Tz An. arabiensis 31/08/2021 02/09/2021 6 4 0 0 0 2 12
Total Sululu An. arabiensis - - 288 752 19 3 0 108 1170
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Supplementary Figures

Supplementary Fig. 1 Classification accuracy when training with EV data only. Classification
accuracy of up to 90% for age group and 91% for species with a training set comprising up to 1452
semi-field (EV) mosquitoes used to train the model. The solid and shaded lines indicate the mean
and standard deviation of the mean of 20 trained models, respectively.
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Supplementary Fig. 2 Confusion matrices of model prediction accuracies for models trained
on LV and GV mosquitoes only. DL-MIRS was trained using different combinations of mosquitoes
from either laboratory larvae reared in the lab (LV, laboratory variation), larvae from the field reared
in the lab (GV, genetic variation), or laboratory larvae reared in semi-field (EV, environmental
variation). a—d, The models were trained on LV or LV+GV mosquitoes (a, b LV alone; or c, d
LV+GV) and tested for their ability to classify a random stratified hold-out test set into the correct
age class (a, c) or species (b, d). e, f, We then trained models on LV+GV mosquitoes, and tested
their accuracy in correctly identifying EV mosquito ages (e) and species (f).
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Age group – IHI
Species – IHI

Age group – IRSS
Species – IRSS

Supplementary Fig. 3 Preselecting wavenumber values from sensitivity analysis of a CNN.
A fully connected neural network was then trained, where the input was the wavenumber values
identified from the sensitivity analysis on UK data, on IHI and IRSS LV data separately. These
models were then tested on LV data from either IHI or IRSS depending which was left out during
training. These results demonstrate that no performance increase can be gained by preselecting
wavenumber values, consistent with the argument that the deep CNN model is not overfitting when
generalisation is poor.
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a Age group – IHI

c Age group – IRSS

b Species – IHI

d Species – IRSS
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Supplementary Fig. 4 EV data from an unseen site. All of the EV samples from one site were
held out and DL-MIRS was trained on the rest of GV and EV samples from IHI (a, b, age and
species, respectively) and IRSS (c, d, age and species, respectively). This demonstrates that if the
training dataset only has GV data for a site it will not be possible for the model to classify EV data,
despite the inclusion of EV data from other sites.

SI-12



Siria et al. – Deep Learning MIRS

c d
Species – IHIAge group – IHI

a
Age group – UOG

b
Species – UOG

e
Age group – IRSS

f
Species – IRSS

IRSS

✔

IHI

✔

UoG ? 

LV

IRSS

✔

IHI ?
UoG

✔

 

LV

IRSS ?
IHI

✔

UoG

✔

 

LV

Supplementary Fig. 5 LV data from an unseen site. DL-MIRS was trained with LV data from two
sites and then used to classify LV data from a third site (UoG in a and b, ; IHI in c and d; IRSS in e
and f). The results demonstrate that the model is not able to learn features capable of classifying
data from a previously unseen laboratory. This shows that differences exist in the MIRS data across
laboratories from different sites. The result is in agreement with the initial UMAP data exploration,
demonstrating differences across laboratories.
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Supplementary Fig. 6 Model overfitting. The CNN was modified to reduce capacity, lowering
the number of trainable parameters, to explore the effect on classification accuracy with a testing
dataset comprising of EV data only, while the training dataset comprises of LV and GV data. This
suggests that the model is not overfitting in the case of training on LV and GV data only, as the model
does not increase testing accuracy on EV data when lowering the number of trainable parameters.
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Supplementary Fig. 7 Impact of the number of mosquitoes used for DL-MIRS training on power
to detect an effect of vector control on mosquito population age structure for each of two vector
control interventions, a, long-lasting insecticide-treated nets (LLIN) and b, attractive toxic sugar
baits (ATSB) relative to a population with no intervention (control).
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